Algebra-II B. Math - First year Mid-Semestral Exam 2012-2013

Time: 3hrs Max score: 100

Answer question **1** and any **four** from the rest.

- (1) State true or false. Justify your answers. No marks will be awarded in absence of proper justification.
 - (a) 0 is not an eigenvalue of the differential operator $D: \mathcal{P}_n(\mathbb{R}) \longrightarrow \mathcal{P}_n(\mathbb{R})$, where $\mathcal{P}_n(\mathbb{R})$ is the space of all real polynomials of degree less than or equal to n.

(b) There exist invertible skew symmetric real matrices of odd order. (c) For a field \mathbb{F} , bases of the vector space \mathbb{F}^n are in bijective correspondence with elements of $GL_n(\mathbb{F})$.

(d) If A is an $n \times n$ matrix such that $A^2 = A$, then rank (A) +rank $(I_n - A) = n$. 8+8+8+8

(2) (a) Find a basis for the null space of the matrix (2)

$A = \begin{bmatrix} 1 & 0 & -5 & 1 & 4 \\ -2 & 1 & 6 & -2 & 2 \\ 0 & 2 & -8 & 1 & 9 \end{bmatrix}.$						
	00	$\begin{array}{c} 0 \\ 0 \end{array}$	 	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{array}{c} 1\\ 0 \end{array}$	
(b) Let A be the $n \times n$ backward identity matrix=	: 0	: 1	:	$\vdots \\ 0$: 0	
What is determinant of A ? Find A^{-1} .	1	0		0	$\begin{bmatrix} 0\\ 8+9 \end{bmatrix}$	

- (3) Define $T : \mathbb{R}^3 \to \mathbb{R}^3$ by $T(x, y, z)^t = (x+y+2z, x-y-3z, 2x+3y+z)^t$. Let \mathcal{B}_1 be the standard basis and $\mathcal{B}_2 = ((1, 1, 1)^t, (1, -1, 1)^t, (1, 1, 2)^t)$ be another ordered basis of \mathbb{R}^3 . Then find
 - (a) the matrix of T with respect to \mathcal{B}_1 , say A_1 ,
 - (b) the matrix of T with respect to \mathcal{B}_2 , say A_2 ,
 - (c) a matrix *P* such that $PA_1P^{-1} = A_2$. 5+6+6

Please turn over

(4) (a) Show that A and A^t have the same set of eigenvalues. Give examples to show that eigen vectors of A and A^t may be different.
(b) Let A = (a_{ij}) be an n × n matrix. Suppose that for all i, 1 ≤ i ≤ n, ∑_{j=1}ⁿ a_{ij} = 1. Then prove that 1 is an eigenvalue of A. What is the corresponding eigenvector?

(c) Suppose all the column sums of A equal to 1. Does the same result hold? 5+8+4

- (5) (a) Let $T : \mathbb{R}^5 \longrightarrow \mathbb{R}^5$ be a linear operator such that $\operatorname{rank}(T-I) = 3$ and $\operatorname{null-space}(T) = \{(x_1, x_2, x_3, x_4, x_5)^t \in \mathbb{R}^5 : x_1 + x_4 + x_5 = 0, x_2 + x_3 = 0\}.$
 - (a) Determine the eigenvalues of T?

(b) Find the number of linearly independent eigenvectors corresponding to each eigenvalue?

- (c) Is T diagonalizable? Justify your answer. 6+7+4
- (6) (a) Define row rank, column rank of a matrix.
 - (b) Show that row rank of a matrix is equal to its column rank.

(b) Let A be a $m \times n$ matrix and B be a $n \times k$ matrix. Prove that rank $(AB) \leq \min \{ \operatorname{rank}(A), \operatorname{rank}(B) \}$. 2+7+8

 $\mathbf{2}$